A quick reference for BC calculus
Created 10/4/2021
$$\displaystyle f'(x) = \lim\limits_{h \to \infty} \frac{f(x+h)- f(x)}{h}$$
$$f(x)$$ | $$f'(x)$$ |
---|---|
$$x^n$$ | $$nx^{n-1}$$ |
$$f(g(x))$$ | $$f'(g(x))\cdot g'(x)$$ |
$$\frac{f(x)}{g(x)}$$ | $$\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$$ |
$$f(x)\cdot g(x)$$ | $$f'(x)g(x)+f(x)g'(x)$$ |
$$f(x)$$ | $$f'(x)$$ |
---|---|
$$a^x$$ | $$ln(a)\cdot a^x$$ |
$$\log_{a} x$$ | $$\frac{1}{x\cdot ln(a)} $$ |
$$f(x)$$ | $$f'(x)$$ |
---|---|
$$ln(x)$$ | $$1/x$$ |
$$e^x$$ | $$e^x$$ |
$$f(x)$$ | $$f'(x)$$ |
---|---|
$$\sin(x)$$ | $$\cos(x)$$ |
$$\cos(x)$$ | $$-\sin(x)$$ |
$$\tan(x)$$ | $$\sec^2(x)$$ |
$$\csc(x)$$ | $$-\csc(x)\cot(x)$$ |
$$\sec(x)$$ | $$\sec(x)\tan(x)$$ |
$$\cot(x)$$ | $$-\csc(x)\sec(x)$$ |
$$f'(x) = \frac{1}{f^{-1}{'}(f(x))}$$ |
---|
$$f(x)$$ | $$f'(x)$$ |
---|---|
$$\sin^{-1}(x)$$ | $$\frac{1}{\sqrt{1-x^2}}$$ |
$$\cos^{-1}(x)$$ | $$-\frac{1}{\sqrt{1-x^2}}$$ |
$$\tan^{-1}(x)$$ | $$\frac{1}{1+x^2}$$ |
$$\csc^{-1}(x)$$ | $$-\frac{1}{|x|\sqrt{x^2-1}}$$ |
$$\sec^{-1}(x)$$ | $$\frac{1}{\sqrt{x^2(x^2-1)}}$$ |
$$cot^{-1}(x)$$ | $$-\frac{1}{x^2+1}$$ |
$$\displaystyle\int_a^b f(x)dx = \lim\limits_{n \to \infty}\sum_{n=1} ^{\infty} (\frac{b-a}{n})f(\frac{b-a}{n}k+a)$$